Protonation of a Bridging Oxo Ligand Is Slow

James M. Carroll and Jack R. Norton*

Department of Chemistry, Colorado State University Fort Collins, Colorado 80523

Received June 10, 1992

Oxo-bridged polynuclear complexes are common in metalloproteins, as numerous reviews attest.¹ Examples include hemerythrin, ribonucleotide reductase, purple acid phosphatases, methane monooxygenase, and the oxygen-evolving center from photosystem II. In the isolated and structurally characterized forms of some metalloproteins (e.g., purple acid phosphatases,² the hydroxylase subunit of methane monooxygenase³) the oxo bridges are believed to be protonated. In other cases the oxo bridges undergo protonation and deprotonation as the metalloproteins perform their physiological function. For example, the deoxy form of hemerythrin has a hydroxo bridge; during O₂ uptake a proton is transferred from that μ -OH to the incoming O₂, although the proton remains connected by a hydrogen bond to the resulting μ -O.¹ Another example is O₂ evolution from photo system II, which requires that water be deprotonated to μ -OH and eventually to μ -O.⁴

Que and True^{1c} have suggested that the proton transfer during O_2 uptake by hemerythrin is "facile". However, the rates of such proton-transfer reactions have never been measured in model compounds. Typically proton transfer to or from oxygen in an organic compound is fast;⁵ there is little barrier to transferring a proton to, or removing a proton from, an oxygen lone pair as long as the hybridization remains sp³. Oxo ligands are not, however, ordinary oxygens. There is significant π bonding between them and the d orbitals of the metal to which they are attached, so their hybridization is not sp³. Protonation should change this hybridization⁶ and is known to change M-O distances⁷ by about 0.1 Å. Protonation of an oxo bridge thus requires extensive geometric and electronic rearrangement like that responsible for the large kinetic barriers attending protonation and deprotonation at carbon⁵ and at transition metals.⁸

Table I. Equilibrium and Rate Constants for the Protonation of Bridging Oxo Ligands

compd	pK_a of compd H ⁺ (in CH ₃ CN)	acida	$\log_{10} K_{eq}^{b}$	k_{H^+} (M ⁻¹ s ⁻¹)	<i>T</i> (°C)
2	$\approx 14^{c}$	pyH ⁺	>1	1920	-20
3	16.2	H+	16.2	5440	25
4	≈13 ^d	H+	≈13	11200	-10

^a As HClO₄ is a strong acid in CH₃CN (ref 17), the acid is given as "H⁺" when HClO₄ is used. ^bFor the protonation equilibrium. ^c Completely protonated by pyH⁺ and negligibly protonated by NH₄⁺. As pyH⁺ has a CH₃CN pK_a of 12.3 and NH₄⁺ has a CH₃CN pK_a of 16.46 (Coetzee, J. R.; Padmanbhan, G. J. Am. Chem. Soc. 1965, 87, 5005) the pK_a of $4H^+$ must be ≈ 14 . ^d Reported as 6.5 in H₂O in ref 7b; can therefore be estimated as about 13 in CH₃CN by the procedure of ref 8d.

As a result proton transfers involving oxo bridges should be considerably slower than those with comparable equilibrium constants involving oxygen in an organic compound. Qualitative evidence that this prediction is correct has been offered by observations of Finke and co-workers⁹ on HSiW₉V₃O₄₀⁶⁻ and by the work of Thorp and Brudvig¹⁰ on the proton-coupled electrochemical reduction of $[(bispicen)Mn^{(IV)}(\mu-O)_2Mn^{(III)}(bispi$ cen)][ClO₄], (1)^{11,12} and by the work of Pecoraro, Penner-Hahn, and co-workers on $[(Salpn)Mn^{(IV)}(\mu-O)(\mu-OH)Mn^{(IV)}(Salpn)][ClO_4]$ (2H⁺).¹³ We present here the first measurement of the rate of an oxo bridge protonation reaction that is slow despite a large thermodynamic driving force.

When a solution of $[(6-methylbispicen)Mn^{(III)}(\mu-O)]_2[ClO_4]_2$ $(3)^{14}$ in CH₃CN was mixed with excess HClO₄ in a stopped-flow apparatus, the growth and decay of an intermediate were observed. When only 1 equiv of HClO₄ was added to a CH₃CN solution of 3, the intermediate persisted and could be isolated and identified¹⁵ as [(6-methylbispicen)Mn^(III)(µ-O)(µ-OH)Mn^(III)(6methylbispicen)][ClO₄]₃ ($\mathbf{3H}^+$); its UV-vis spectrum in CH₃CN showed λ_{max} at 490 (ϵ = 235) and 684 (ϵ = 130) nm. The protonation was reversible: addition of an equiv of Et₃N to a solution of 3H⁺ regenerated the UV-vis spectrum of 3. Other acids (e.g., triflic and sulfuric) with conjugate bases that are weakly nucleophilic in CH₃CN also produced 3H⁺ from 3; however, 3H⁺ proved unstable in the presence of any reasonably good nucleophile (e.g., Cl⁻, PhCO₂⁻, NO₃⁻) or of excess acid.

We could now explain the growth and decay of the intermediate in the stopped-flow reaction of 3 with excess HClO₄. Rapid scan data, obtained from 300 to 600 nm, showed that the intermediate had the characteristic peak of 3H⁺ at 490 nm; the decay of 3H⁺ was then due to its instability in excess acid. The pseudo-first-order rate constant for the formation of 3H⁺ from 3 was obtained by fitting the absorbance at 340 nm to the standard equation¹⁶ for

^{(1) (}a) Oxo-bridged polyiron centers: Lippard, S. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 344. (b) See: Chapters 4, 8, 9, 10, 11, and 12 In Metal Clusters in Proteins; Que, L., Jr., Ed.; ACS Symposium Series 372; American Chemical Society: Washington, DC, 1988. (c) Oxo-bridged diiron and dimanganese proteins: Que, L., Jr.; True, A. E. Prog. Inorg. Chem. 1990, 38, 82 200. (c) Oxo-bridged diiron explored diiron explored diiron and dimanganese proteins. Que, L., Jr.; True, A. E. Prog. Inorg. Chem. 1990, 38, 82 200. (c) Oxo-bridged diiron explored diiron explored diiron explored by Section 200. (c) Oxo-bridged diiron and dimanganese proteins. 98-200. (d) Oxo- and hydroxo-bridged diiron complexes: Kurtz, D. M., Jr. Chem. Rev. 1990, 90, 585-606. (e) Oxo-bridged diiron centers: Vincent, J. (2) There is reason to believe that the oxo bridge between the Fe(II) and

Fe(III) in purple acid phosphatases bears a proton, la,c although some disagree.^{id}

⁽³⁾ The bridge between the irons in the hydroxylase subunit of methane monooxygenase may be a hydroxo ligand: DeWitt, J. G.; Bentsen, J. G.; Rosenzweig, A. C.; Hedman, B.; Green, J.; Pilkington, S.; Papaefthymiou, G. ; Dalton, H.; Hodgson, K. O.; Lippard, S. J. J. Am. Chem. Soc. 1991, 113, 9219.

⁽⁴⁾ Thorp, H. H.; Brudvig, G. W. New J. Chem. 1991, 15, 479. See, also: Chapters 11 and 12 in ref 1b.

^{(5) (}a) Bell, R. P. The Proton in Chemistry; Cornell University Press: Ithaca, NY, 1973; p 130. (b) Stewart, R. The Proton: Applications to Organic Chemistry; Academic: New York, 1985; pp 280–281. (c) Connors, K. A. Chemical Kinetics: The Study of Reaction Rates in Solution; VCH: New York, 1990; p 149.

⁽⁶⁾ Particularly good evidence of this is offered by the change in sign of J when $[(TACN)_2V^{III}_2(\mu-OH)(\mu-O_2CR)_2]^{2+}$ is protonated: Knopp, P.; Wieghardt, K. *Inorg. Chem.* **1991**, *30*, 4061. (7) (a) Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.;

^{(1) (}a) Wiegnardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.;
(b) Hagen, K. S.; Westmoreland, T. D.; Scott, M. J.; Armstrong, W. H. J.
Am. Chem. Soc. 1989, 111, 1907. (c) Hagen, K. S.; Westmoreland, T. D.;
Scott, M. J.; Armstrong, W. H.; Pal, S. Manuscript in preparation. (d)
Armstrong, W. H.; Lippard, S. J. J. Am. Chem. Soc. 1984, 106, 4632.
(a) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 1255.
(b) Edidin, R. T.; Sullivan, J. M.; Norton, J. R.; Moroz, A.; Sweany, R. L.;
Whittenburg, S. L. Oceanometallics 1991, 10, 2357. (d) Kristiansdöttir, S.

Whittenburg, S. L. Organometallics 1991, 10, 2357. (d) Kristjänsdöttir, S. S.; Norton, J. R. Transition Metal Hydrides: Recent Advances in Theory and Experiment; Dedieu, A., Ed.; VCH Publishers: in press.

⁽⁹⁾ The proton in HSiW₉V₃O₄₀⁶⁻, bound to an oxygen bridging two vanadiums, shows little mobility in the absence of added acid or base: R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947. It is also worth noting that the tautomerization between the terminal hydroxo and oxo ligands in (2-butyne)₂Re(O)(OH) is extremely slow (half-life = 11 h): Erikson, T. K. G.; Mayer, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1527

⁽¹⁰⁾ Kalsbeck, W. A.; Thorp, H. H.; Brudvig, W. G. J. Electroanal. Chem. 1991, 314, 335; Thorp, H. H., North Carolina State University, personal communication.

⁽¹¹⁾ Collins, M. A.; Hodgson, D. J.; Michelsen, K.; Pedersen, E. J. Chem. (1) Collins, M. A., Holgson, J. J., Michelen, R., Federsch, E. J. Chem.
 Soc., Chem. Commun. 1987, 1659.
 (12) Abbreviations: HBPz₃ = hydrotris(1-pyrazoyl)borate, bispicen =

N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine), 6-methylbispicen = N,N'bis((6-methylpyrid-2-yl)methyl)ethane-1,2-diamine, H₂Salpn = 1,3-bis(salicylideneiminato)propane, TACN = 1,4,7-triazacyclononane.

⁽¹³⁾ Larson, E. J.; Riggs, P.; Penner-Hahn, J. E.; Pecoraro, V. L. J. Chem. Soc., Chem. Commun. 1992, 102.
(14) Goodson, P. A.; Oki, S.; Glerup, J.; Hodgson, D. J. J. Am. Chem. Soc.

³H⁺ as solids in KBr, implying that that ligand is not protonated in 3H⁺ and that an oxo bridge must be; the agreement between the diffuse reflectance spectrum of solid $3H^+$ and its UV-vis spectrum in CH₃CN implies that the μ -OH structure of $3H^+$ persists in solution.

two consecutive first-order reactions. We thus, after taking into account the fact that HClO₄ is a strong acid in CH₃CN,¹⁷ obtained a value of 5440 M⁻¹ s⁻¹ at 25 °C for k_{H+} , the second-order rate constant in Scheme I. The temperature dependence of k_{H+} showed that the slowness of this protonation reaction is due to the activation enthalpy ($\Delta H^* = 16 \text{ kcal/mol}, \Delta S^* \approx 0 \text{ eu}$).

Spectrophotometric titration¹⁸ of $3H^+$ with the triflate salt of 2,6-lutidinium¹⁹ showed its CH₃CN pK_a to be 16.2 (5), implying^{8d} a p K_a of approximately 8.7 in water. The protonation in Scheme I is thus thermodynamically downhill by over 16 pK, units. With ordinary oxygens diffusion-controlled rates are observed when ΔpK_a is downhill by more than four pK_a units,^{5a} so k_{H+} is more than 10⁶ slower than the rate constant expected for such an oxygen.

We have obtained measurable rate constants at reduced temperatures (see Table I) for two other oxo-bridged manganese complexes, $[(TACN)_4Mn^{(IV)}_4(\mu-O)_6][Br]_4$ (4)^{7a} and [(Salpn)- $Mn^{(iv)}(\mu-O)]_2$ (2).²⁰ As before, rapid scan data on the protonation of 4 in excess $HClO_4$ showed the formation and decay of the known^{7b,c,21} **4H**⁺. The protonation of **2** with pyH^+ gave a stable product identified by its UV-vis spectrum²² as **2H**⁺. In all three cases the rate constants are substantially slower than those for the protonation of organic oxygens with comparable equilibrium constants.

We have been unable to measure rate constants for the protonation of [(bispicen)Mn^(III)(μ -O)₂Mn^(III)(bispicen)][ClO₄]₃ (1)¹¹ (the (III,III) compound could not be generated from the reduction of the (III,IV) precursor fast enough to allow measurement of $k_{\rm H^+}$, [(HB(Pz)_3)Fe^(III)(μ -O)(μ -O₂CCH₃)₂Fe^(III)(HB(Pz)_3)] (5)²³ (even at -30 °C the formation of 5H^{+7d} was too fast to observe), and $[(bipy)_2Mn^{(III)}(\mu-O)_2Mn^{(IV)}(bipy)_2][ClO_4]_3$ (6)²⁴ (6H⁺ decayed to a known trimer⁴ faster than the mixing time of our stopped-flow; $k_{obs} = 25.2 \text{ s}^{-1} \text{ at } 25 \text{ °C}, \text{ pH } 2.3$).

The slow protonation rates we have observed suggest that proton transfers could be rate-determining in the action of oxo-bridged metalloproteins. We are now investigating the effects of various structural features of oxo-bridged complexes on the rates at which they accept protons.

Acknowledgment. This work was supported by NSF Grant CHE-9120454. We are grateful to Holden Thorp (N.C. State) for a sample of 1, to Vincent Pecoraro (U. of Michigan) for a sample of 2, and to Derek Hodgson and Patricia Goodson (Wyoming) and to Stephen Lippard (MIT) for helpful discussions. We thank the University of Wyoming chemistry department for the use of its diffuse reflectance apparatus.

A Novel Pd-Catalyzed Cycloalkylation to Isoxazoline 2-Oxides. Application for the Asymmetric Synthesis of Carbanucleosides

Barry M. Trost,* Leping Li, and Simon D. Guile

Department of Chemistry, Stanford University Stanford, California 94305-5080 Received June 22, 1992

2-Ene-1,4-diols constitute useful building blocks for synthesis via Pd-catalyzed reactions because of their potential for sequential replacement of each oxygen leaving group and for enantioselective synthesis via dissymmetrization with chiral ligands.¹⁻⁴ The ambident nature of nitro-stabilized anions permits both C and O alkylation.^{5,6} We wish to record an unusual Pd-catalyzed cy-

(3) Montforts, F. B.; Gesing-Zibulak, I.; Grammenos, W.; Schneider, M.; Laumen, K. Helv. Chim. Acta 1989, 72, 1852. (4) Cf. Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E. Angew.

⁽¹⁶⁾ Espenson, J. H. Chemical Kinetics and Reaction Mechanisms; McGraw-Hill: New York, NY, 1981; p 67. (17) Kolthoff, I. M.; Bruckenstein, S.; Chantooni, M. K. J. Am. Chem.

Soc. 1961, 83, 3927.

⁽¹⁸⁾ The pK_a is calculated from the spectrophotometrically measured equilibrium constant for 3 +lutidinium $= 3H^+ +$ lutidine as in ref 8b. (19) $pK_a = 15.4$: Cauquis, G.; Deronzier, A.; Serve, D.; Vieil, E. J. Electroanal. Chem. Interfacial Electrochem. 1975, 60, 205.

⁽²⁰⁾ Larson, E. J.; Lah, M. S.; Li, X.; Bonadies, J. A.; Pecoraro, V. L. *Inorg. Chem.* 1992, 31, 373.
(21) The fact that the relatively featureless UV-vis spectrum of 4H⁺ in

CH₃CN is reproduced in the diffuse reflectance spectrum of solid **4H⁺** implies that the μ -OH structure established for **4H⁺** by X-ray crystallography (refs 7b,c) persists in solution. UV-vis observation of the reaction of 4 with HClO4 gives the same two isosbestic points (530 and 620 nm) observed by Arm-

^{gives the same two isobesic ophots (350 and 620 mm) observed by Arman (22) A µ-OH structure has been proposed for 2H⁺ on the basis of the increase (≈0.1 Å) in the Mn-Mn distance (EXAFS) of 2H⁺ over that of 2. The UV-vis spectrum of 2H⁺ in CH₃CN agrees with that reported in ref 13. (23) Armstrong, W. H.; Spool, A.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J. Am. Chem. Soc. 1984, 106, 3653. (24) Calvin, M.; Cooper, S. R. J. Am. Chem. Soc. 1977, 99, 6623.}

⁽¹⁾ Trost, B. M.; Van Vranken, D. L. Angew. Chem., Int. Ed. Engl. 1992, 31, 228. Trost, B. M.; Van Vranken, D. L. J. Am. Chem. Soc. 1991, 113, 6317; 1990, 112, 1261. Mori, M.; Nukui, S.; Shibasaki, M. Chem. Lett. 1991, 1797

⁽²⁾ Deardorff, D. R.; Linde, R. G., II; Martin, A. M.; Shulman, M. J. J. Org. Chem. 1989, 54, 2759.

Chem., Int. Ed. Engl. 1982, 21, 480. Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 847.

⁽⁵⁾ For reviews, see: Barrett, A. G. M. Chem. Soc. Rev. 1991, 20, 95. Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423. Rosini, G.; Ballini, R.; Petrini, M.; Marotta, E.; Righi, P. Org. Prep. Proc. Int. 1990, 22, 707. Ono, N. In Nitro Compounds; Recent Advances in Synthesis and Chemistry; Group, N. in Physics Compounds; Recent Advances in Synthesis and Chemistry; Feuer, H., Nielsen, A. T., Eds.; VCH Publishers: New York, 1990. Rosin; G.; Ballini, R. Synthesis 1988, 833. Kabalka, G. W.; Varma, R. S. Org. Prep. Proc. Int. 1987, 19, 283. Varma, R. S.; Kabalka, G. W. Heterocycles 1986, 24, 2645. Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751. Ono, N.; Kaji, A. Synthesis 1986, 693. Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.

⁽⁶⁾ Cf. Rosini, G.; Marotta, E.; Righi, P.; Seerden, J. P. J. Org. Chem. 1991, 56, 6258. Bäckvall, J. E.; Karlsson, U.; Chinchilla, R. Tetrahedron Lett. 1991, 32, 5607. Melot, J. M.; Texier-Boullet, F.; Foucaud, A. Synthesis 1988, 558. Seebach, D.; Brook, M. A. Can. J. Chem. 1987, 65, 836. Denmark, S. E.; Cramer, C. J.; Sternberg, J. A. Helv. Chim. Don, 69, 69, 69, 1971. Denmark, S. E.; Dappen, M. S.; Cramer, C. J. J. Am. Chem. Soc. 1986, 108, 1306.
 Magdesieva, N. N.; Sergeeva, T. A.; Kyandzhetsian, R. A. Zh. Org. Khim.
 1985, 21, 1980; Chem. Abstr. 1985, 103, 215232. Kaji, E.; Zen, S. Chem.
 Pharm. Bull. 1980, 28, 479. Nielsen, T. A.; Archibald, T. G. Tetrahedron 1979, 26, 3475.